Cart (Loading....) | Create Account
Close category search window
 

Multiple similarity queries: a basic DBMS operation for mining in metric databases

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Braunmuller, B. ; Inst. of Comput. Sci., Munchen Univ., Germany ; Ester, M. ; Kriegel, H.-P. ; Sander, J.

Metric databases are databases where a metric distance function is defined for pairs of database objects. In such databases, similarity queries in the form of range queries or k-nearest-neighbor queries are the most important query types. In traditional query processing, single queries are issued independently by different users. In many data mining applications, however, the database is typically explored by iteratively asking similarity queries for answers of previous similarity queries. We introduce a generic scheme for such data mining algorithms and we investigate two orthogonal approaches, reducing I/O cost as well as CPU cost, to speed-up the processing of multiple similarity queries. The proposed techniques apply to any type of similarity query and to an implementation based on an index or using a sequential scan. Parallelization yields an additional impressive speed-up. An extensive performance evaluation confirms the efficiency of our approach

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:13 ,  Issue: 1 )

Date of Publication:

Jan/Feb 2001

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.