By Topic

Self-similar network traffic characterization through linear scale-invariant system models

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
R. Rao ; Dept. of Electr. Eng., Rochester Inst. of Technol., NY, USA ; Seungsin Lee

It has been empirically documented that data traffic over networks of various types exhibits fractal or self-similar behavior in many instances. Accurate analysis of traffic density and estimation of buffer size must take into account this self-similar nature. There is ongoing research on generating self-similar data for use in simulation and modeling of network traffic. This paper demonstrates that the novel models proposed by Zhao and Rao (1998, 1999) for constructing purely discrete-time self-similar processes and linear scale-invariant (LSI) systems lend themselves to the synthesis of data whose self-similarity parameters match those observed in network traffic. The paper provides theoretical development and experimental results

Published in:

Personal Wireless Communications, 2000 IEEE International Conference on

Date of Conference: