By Topic

Robust Kalman filtering for discrete state-delay systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mahmoud, M.S. ; Dept. of Electr. & Comput. Eng., Kuwait Univ., Safat, Kuwait ; Xie, L. ; Soh, Y.C.

A robust estimator design methodology has been developed for a class of linear uncertain discrete-time systems. It extends the Kalman filter to the case in which the underlying system is subject to norm-bounded uncertainties and constant state delay. A linear state estimator is constructed via a systematic procedure such that the estimation error covariance is guaranteed to lie within a certain bound for all admissible uncertainties. The solution is given in terms of two Riccati equations involving scaling parameters. A numerical example is provided to illustrate the theory

Published in:

Control Theory and Applications, IEE Proceedings -  (Volume:147 ,  Issue: 6 )