Cart (Loading....) | Create Account
Close category search window
 

Spherical rolling robot: a design and motion planning studies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bhattacharya, S. ; Dept. of Mech. Eng., Delaware Univ., Newark, DE, USA ; Agrawal, S.K.

Describes a prototype and analytical studies of a spherical rolling robot, a new design of a nonholonomic robot system. The spherical robot is driven by two remotely controlled, internally mounted rotors that induce the ball to roll and spin on a flat surface. It is tracked on the plane by an overhead camera. A mathematical model of the robot's motion was developed using the nonholonomic constraints on its motion. For a number of simple motions, it is shown experimentally that the model agrees well with the results. Methods were developed for planning feasible, minimum time and minimum energy trajectories for the robot. These methods are illustrated both by mathematical simulation and hardware experiments

Published in:

Robotics and Automation, IEEE Transactions on  (Volume:16 ,  Issue: 6 )

Date of Publication:

Dec 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.