By Topic

Dynamic knowledge inference and learning under adaptive fuzzy Petri net framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Xiaoou Li ; Dept. de Ingenieria Electr., CINVESTAV-IPN, Mexico City, Mexico ; Wen Yu ; Lara-Rosano, F.

Since knowledge in an expert system is vague and modified frequently, expert systems are fuzzy and dynamic. It is very important to design a dynamic knowledge inference framework which is adjustable according to knowledge variation as human cognition and thinking. A generalized fuzzy Petri net model, called adaptive fuzzy Petri net (AFPN), is proposed with this object in mind. AFPN not only has the descriptive advantages of the fuzzy Petri net, it also has learning ability like a neural network. Just as other fuzzy Petri net (FPN) models, AFPN can be used for knowledge representation and reasoning, but AFPN has one important advantage: it is suitable for dynamic knowledge, i.e., the weights of AFPN are adjustable. Based on the AFPN transition firing rule, a modified backpropagation learning algorithm is developed to assure the convergence of the weights

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:30 ,  Issue: 4 )