By Topic

Decomposition in data mining: an industrial case study

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Kusiak, A. ; Intelligent Syst. Lab., Iowa Univ., Iowa City, IA, USA

Data mining offers tools for discovery of relationships, patterns, and knowledge in large databases. The knowledge extraction process is computationally complex and therefore a subset of all data Is normally considered for mining. In this paper, numerous methods for decomposition of data sets are discussed. Decomposition enhances the quality of knowledge extracted from large databases by simplification of the data mining task. The ideas presented are illustrated with examples and an industrial case study. In the case study reported in this paper, a data mining approach is applied to extract knowledge from a data set. The extracted knowledge is used for the prediction and prevention of manufacturing faults in wafers

Published in:

Electronics Packaging Manufacturing, IEEE Transactions on  (Volume:23 ,  Issue: 4 )