By Topic

Color pattern recognition using fringe-adjusted joint transform correlation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Alam, M.S. ; Dept. of Electr. & Comput. Eng., Alabama Univ., Tuscaloosa, AL, USA ; Wai, C.N.

A fringe-adjusted joint-transform correlator (JTC) based technique for improved color pattern recognition is introduced. In the proposed technique, a real-valued filter, called the fringe-adjusted filter is used to reshape the joint power spectrum in order to yield better correlation output. A color image is processed through three channels, and the fringe-adjusted filtering is applied to each of these channels to obtain excellent correlation discrimination. The correlation outputs from these channels are then fused together to achieve a decision on the detection of a given color pattern. It is also shown that the fringe-adjusted filtering can be applied to a multichannel single-output JTC to obtain excellent correlation output that represents the coherence level between the input target image and the reference image for all color channels. These two techniques can be easily implemented in real time as for practical color pattern recognition applications. Two architectures for all-optical implementation of the proposed techniques are presented

Published in:

National Aerospace and Electronics Conference, 2000. NAECON 2000. Proceedings of the IEEE 2000

Date of Conference: