By Topic

Elliptical orbit constellations-a new paradigm for higher efficiency in space systems?

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Draim, J.E. ; Ellipso Inc., Washington, DC, USA ; Cefola, P.J. ; Castrel, D.

Several systems are being developed for satellite cellular telephone use. Examples are Iridium, Globalstar, ICO, and ELLIPSO. Systems designers seem to prefer sub-synchronous multi-satellite arrays over geostationary satellites as they can more easily communicate with small low-power handheld cellular telephones, and they also have less signal latency (time delay). The flexibility of the elliptic orbit allows a biasing of earth coverage towards a given latitude. Increased coverage is obtained by placing apogees in a stable orbit over a preferred latitude. If the orbit is both elliptical and sun-synchronous, it can also be biased towards a given (local) time of day. With apogees appearing during daytime, greater capacity is ensured during the peak usage hours for telephone communications. Tailored elliptical-orbit constellations may well become the paradigm for many of these new telecommunications space systems. Lower cost elliptic-orbit constellations, with fewer satellites, may well prove more profitable than circular arrays for many other space applications, as well

Published in:

Aerospace Conference Proceedings, 2000 IEEE  (Volume:7 )

Date of Conference:

2000