Cart (Loading....) | Create Account
Close category search window
 

Probabilistic enhancement of classical robustness margins: a class of nonsymmetric distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Lagoa, C.M. ; Dept. of Electr. Eng., Pennsylvania State Univ., University Park, PA, USA

The focal point of this paper is a control system subject to parametric uncertainty. Motivated by recent results in the newly emergent area of probabilistic robustness, we address the problem of risk assessment when the classical robustness margin is exceeded, without a priori knowledge of the distribution of the uncertain parameters. The only assumption is that the distribution belongs to a class Fra introduced in this paper. In contrast to previous work, the class Fra contains both symmetric and nonsymmetric distributions; only unimodality is required. For this class, we provide a new version of the truncation principle; i.e., under mild conditions on the performance specifications, the assessment of risk of performance violation can be done using only a subset of the admissible distributions, which we call truncated uniform distributions. Also, if the set of uncertainties that verify the performance specifications is convex, then it is proven that the risk can be assessed using only the “extremes” of the class of truncated uniform distributions; i.e., the assessment of the risk can be done using only a finite subset of the admissible distributions. These results are then applied in the linear matrix inequality context. Finally, a way of estimating risk is provided for the nonconvex case. The procedure presented enables the enhancement of robustness margins provided by a deterministic method

Published in:

American Control Conference, 2000. Proceedings of the 2000  (Volume:6 )

Date of Conference:

2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.