Cart (Loading....) | Create Account
Close category search window
 

Polyphase back-projection filtering for image resolution enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cohen, B. ; Dept. of Electr. & Comput. Eng., Ben Gurion univ. of the Negev, Beer Sheva, Israel ; Dinstein, I.

The method for reconstruction and restoration of super-resolution images from sets of low-resolution images presented is an extension of the algorithm proposed by Irani and Peleg (1991). After estimating the projective transformation parameters between the image sequence frames, the observed data are transformed into a sequence with only quantised sub-pixel translations. The super-resolution reconstruction is an iterative process, in which a high-resolution image is initialised and iteratively improved. The improvement is achieved by back-projecting the errors between the translated low-resolution images and the respective images obtained by simulating the imaging system. The imaging system's point-spread function (PSF) and the back-projection function are first estimated with a resolution higher than that of the super-resolution image. The two functions are then decimated so that two banks of polyphase filters are obtained. The use of the polyphase filters allows exploitation of the input data without any smoothing and/or interpolation operations. The presented experimental results show that the resolution improvement is better than the results obtained with Irani and Peleg's algorithm.

Published in:

Vision, Image and Signal Processing, IEE Proceedings -  (Volume:147 ,  Issue: 4 )

Date of Publication:

Aug 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.