By Topic

Learning patterns of activity using real-time tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stauffer, Chris ; Artificial Intelligence Lab., MIT, Cambridge, MA, USA ; Grimson, W.E.L.

Our goal is to develop a visual monitoring system that passively observes moving objects in a site and learns patterns of activity from those observations. For extended sites, the system will require multiple cameras. Thus, key elements of the system are motion tracking, camera coordination, activity classification, and event detection. In this paper, we focus on motion tracking and show how one can use observed motion to learn patterns of activity in a site. Motion segmentation is based on an adaptive background subtraction method that models each pixel as a mixture of Gaussians and uses an online approximation to update the model. The Gaussian distributions are then evaluated to determine which are most likely to result from a background process. This yields a stable, real-time outdoor tracker that reliably deals with lighting changes, repetitive motions from clutter, and long-term scene changes. While a tracking system is unaware of the identity of any object it tracks, the identity remains the same for the entire tracking sequence. Our system leverages this information by accumulating joint co-occurrences of the representations within a sequence. These joint co-occurrence statistics are then used to create a hierarchical binary-tree classification of the representations. This method is useful for classifying sequences, as well as individual instances of activities in a site

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:22 ,  Issue: 8 )