By Topic

Neural network design for short-term load forecasting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. Charytoniuk ; Texas Univ., Arlington, TX, USA ; M. S. Chen

This paper addresses an issue of the optimal design of a neural-network based short-term load forecaster. It describes the process of developing a multilayer, feedforward neural network for load forecasting, and then presents algorithms for performing two important steps of this process, i.e., input variable selection and network structure design. Input variable selection is carried out by forming a set of variables significantly correlated with the forecasted load and then by removing redundant, mutually correlated variables using singular value decomposition techniques. Selection of the optimal number of hidden neurons is based on the observation that oversized networks display near collinearity in the outputs of their hidden neurons. Hence, the presence of redundant hidden neurons can be detected by examining column dependency in the matrix of the hidden neuron outputs computed from the training data. The methodology presented in this paper can be used in the automatic design of an optimal forecaster based on historical data

Published in:

Electric Utility Deregulation and Restructuring and Power Technologies, 2000. Proceedings. DRPT 2000. International Conference on

Date of Conference: