Cart (Loading....) | Create Account
Close category search window

Fault location of a teed-network with wavelet transform and neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Lai, L.L. ; Energy Syst. Group, City Univ., London, UK ; Vaseekar, E. ; Subasinghe, H. ; Rajkumar, N.
more authors

A new technique using wavelet transforms and neural networks for fault location in a tee-circuit is proposed in this paper. Fault simulation is carried out in EMTP96 using a frequency dependent transmission line model. Voltage and current signals are obtained for a single phase (phase-A) to ground fault at every 500 m distance on one of the branches, which is 64.09 km long. Simulation is carried out for 3 cycles (60 ms) with step size Δt, of 2.5 μs to abstract the high frequency component of the signal and every 100 points have been selected as output. Two cycles of waveform, covering pre-fault and post-fault information are abstracted for further analysis. These waveforms are then used in wavelet analysis to generate the training pattern. Two different mother wavelets have been used to decompose the signal, from which the statistical information is abstracted as the training pattern. RBF network was trained and cross-validated with unseen data

Published in:

Electric Utility Deregulation and Restructuring and Power Technologies, 2000. Proceedings. DRPT 2000. International Conference on

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.