By Topic

Using simulation for assessing the real impact of test-coverage on defect-coverage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Briand, L.C. ; Dept. of Syst. & Comput. Eng., Carleton Univ., Ottawa, Ont., Canada ; Pfahl, D.

The use of test-coverage measures (e.g., block-coverage) to control the software test process has become an increasingly common practice. This is justified by the assumption that higher test-coverage helps achieve higher defect-coverage and therefore improves software quality. In practice, data often show that defect-coverage and test-coverage grow over time, as additional testing is performed. However, it is unclear whether this phenomenon of concurrent growth can be attributed to a causal dependency, or if it is coincidental, simply due to the cumulative nature of both measures. Answering such a question is important as it determines whether a given test-coverage measure should be monitored for quality control and used to drive testing. Although it is no general answer to this problem, a procedure is proposed to investigate whether any test-coverage criterion has a genuine additional impact on defect-coverage when compared to the impact of just running additional test cases. This procedure applies in typical testing conditions where the software is tested once, according to a given strategy, coverage measures are collected as well as defect data. This procedure is tested on published data, and the results are compared with the original findings. The study outcomes do not support the assumption of a causal dependency between test-coverage and defect-coverage, a result for which several plausible explanations are provided

Published in:

Reliability, IEEE Transactions on  (Volume:49 ,  Issue: 1 )