By Topic

Maximum-likelihood template matching

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
C. F. Olson ; Jet Propulsion Lab., California Inst. of Technol., Pasadena, CA, USA

In image matching applications such as tracking and stereo matching, it is common to use the sum-of-squared-differences (SSD) measure to determine the best match for an image template. However, this measure is sensitive to outliers and is not robust to template variations. We describe a robust measure and efficient search strategy for template matching with a binary or greyscale template using a maximum-likelihood formulation. In addition to subpixel localization and uncertainty estimation, these techniques allow optimal feature selection based on minimizing the localization uncertainty. We examine the use of these techniques for object recognition, stereo matching, feature selection, and tracking

Published in:

Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on  (Volume:2 )

Date of Conference: