Cart (Loading....) | Create Account
Close category search window
 

A general method for Errors-in-Variables problems in computer vision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Matei, B. ; Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA ; Meer, P.

The Errors-in-Variables (EIV) model from statistics is often employed in computer vision though only rarely under this name. In an EIV model all the measurements are corrupted by noise while the a priori information is captured with a nonlinear constraint among the true (unknown) values of these measurements. To estimate the model parameters and the uncorrupted data, the constraint can be linearized, i.e., embedded in a higher dimensional space. We show that linearization introduces data-dependent (heteroscedastic) noise and propose an iterative procedure, the heteroscedastic EIV (HEIV) estimator to obtain consistent estimates in the most general, multivariate case. Analytical expressions for the covariances of the parameter estimates and corrected data points, a generic method for the enforcement of ancillary constraints arising from the underlying geometry are also given. The HEIV estimator minimizes the first order approximation of the geometric distances between the measurements and the true data points, and thus can be a substitute for the widely used Levenberg-Marquardt based direct solution of the original nonlinear problem. The HEIV estimator has however the advantage of a weaker dependence on the initial solution and a faster convergence. In comparison to Kanatani's renormalization paradigm (an earlier solution of the same problem) the HEIV estimator has more solid theoretical foundations which translate into better numerical behavior We show that the HEIV estimator can provide an accurate solution to most 3D vision estimation tasks, and illustrate its performance through two case studies: calibration and the estimation of the fundamental matrix

Published in:

Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on  (Volume:2 )

Date of Conference:

2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.