By Topic

The dual parameterization approach to optimal least square FIR filter design subject to maximum error constraints

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Hai Huyen Dam ; Karlskrona Univ., Ronneby, Sweden ; Kok Lay Teo ; Nordebo, S. ; Cantoni, Antonio

This paper is concerned with the design of linear-phase finite impulse response (FIR) digital filters for which the weighted least square error is minimized, subject to maximum error constraints. The design problem is formulated as a semi-infinite quadratic optimization problem. Using a newly developed dual parameterization method in conjunction with the Caratheodory's dimensional theorem, an equivalent dual finite dimensional optimization problem is obtained. The connection between the primal and the dual problems is established. A computational procedure is devised for solving the dual finite dimensional optimization problem. The optimal solution to the primal problem can then be readily obtained from the dual optimal solution. For illustration, examples are solved using the proposed computational procedure

Published in:

Signal Processing, IEEE Transactions on  (Volume:48 ,  Issue: 8 )