Cart (Loading....) | Create Account
Close category search window

de Morgan bisemilattices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Brzozowski, J.A. ; Dept. of Comput. Sci., Waterloo Univ., Ont., Canada

We study de Morgan bisemilattices, which are algebras of the form (S, ∪, ∧, -, 1, 0), where (S, ∪, ∧) is a bisemilattice, 1 and 0 are the unit and zero elements of S, and - is a unary operation, called quasi-complementation, that satisfies the involution law and de Morgan's laws. de Morgan bisemilattices are generalizations of de Morgan algebras, and have applications in multi-valued simulations of digital circuits. We present some basic observations about bisemilattices, and provide a set-theoretic characterization for a subfamily of de Morgan bisemilattices, which we call locally distributive de Morgan bilattices

Published in:

Multiple-Valued Logic, 2000. (ISMVL 2000) Proceedings. 30th IEEE International Symposium on

Date of Conference:


Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.