By Topic

Learning globally consistent maps by relaxation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Duckett, T. ; Dept. of Technol., Orebro Univ., Sweden ; Marsland, S. ; Shapiro, J.

Mobile robots require the ability to build their own maps to operate in unknown environments. A fundamental problem is that odometry-based dead reckoning cannot be used to assign accurate global position information to a map because of drift errors caused by wheel slippage. The paper introduces a fast, online method of learning globally consistent maps, using only local metric information. The approach differs from previous work in that it is computationally cheap, easy to implement and is guaranteed to find a globally optimal solution. Experiments are presented in which large, complex environments were successfully mapped by a real robot, and quantitative performance measures are used to assess the quality of the maps obtained

Published in:

Robotics and Automation, 2000. Proceedings. ICRA '00. IEEE International Conference on  (Volume:4 )

Date of Conference:

2000