Cart (Loading....) | Create Account
Close category search window
 

Random coding error exponents for flat fading channels with realistic channel estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ahmed, W.K.M. ; Lucent Technol., AT&T Bell Labs., Holmdel, NJ, USA ; McLane, P.J.

There has been a considerable interest in determining the limits to communications over multipath fading channels. However, most studies have assumed that the channel is perfectly known at the receiver. In this paper, the random coding error exponent for flat fading channels with realistic channel state information (CSI) is studied. It is assumed that the CSI is obtained via some practical technique which utilizes a linear estimation scheme. Two commonly used techniques for channel estimation are considered in this paper, namely pilot tone extraction and pilot symbol transmission. The degradation in the achievable performance due to partial CSI is assessed and comparison of the different channel estimation methods is made. The focus of this paper is on the Jake's mobile Rayleigh flat fading model. Although Jake's model does not have a Markov property, such as that found in the commonly used exponential correlation model, which is usually attractive from the mathematical tractability point of view, Jake's model has a physical basis. Also, this model is considered herein from the standpoint of the random coding exponent. The results in this paper shed light on the amount of degradation in the achievable performance that is expected when the receiver has partial CSI. Finally, the sensitivity of the loss in achievable performance for the various channel estimation techniques with respect to channel parameters, such as Doppler spread and signal-to-noise ratio (SNR), is studied.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:18 ,  Issue: 3 )

Date of Publication:

March 2000

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.