By Topic

On SVD for estimating generalized eigenvalues of singular matrix pencil in noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hua, Y. ; Dept. of Electr. Eng., Melbourne Univ., Parkville, Vic., Australia ; Sarkar, T.K.

Several algorithms for estimating generalized eigenvalues (GEs) of singular matrix pencils perturbed by noise are reviewed. The singular value decomposition (SVD) is explored as the common structure in the three basic algorithms: direct matrix pencil algorithm, pro-ESPRIT, and TLS-ESPRIT. It is shown that several SVD-based steps inherent in the algorithms are equivalent to the first-order approximation. In particular, the Pro-ESPRIT and its variant TLS-Pro-ESPRIT are shown to be equivalent, and the TLS-ESPRIT and its earlier version LS-ESPRIT are shown to be asymptotically equivalent to the first-order approximation. For the problem of estimating superimposed complex exponential signals, the state-space algorithm is shown to be also equivalent to the previous matrix pencil algorithms to the first-order approximation. The second-order perturbation and the threshold phenomenon are illustrated by simulation results based on a damped sinusoidal signal. An improved state-space algorithm is found to be the most robust to noise.<>

Published in:

Signal Processing, IEEE Transactions on  (Volume:39 ,  Issue: 4 )