By Topic

State estimation using an approximate reduced statistics algorithm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
R. A. Iltis ; California Univ., Santa Barbara, CA, USA

The problem of state estimation using nonlinear additive Gaussian noise measurements is addressed. A geometric model for the posterior state density is assumed based on a multidimensional Haar basis representation. An approximate reduced statistics (ARS) algorithm, suggested by the parameter estimator of Kulhavy is then developed, using successive minimization of relative entropy between model densities and an approximate posterior density. The state estimator thus derived is applied to a bearings-only target tracking problem in a multiple sensor scenario

Published in:

IEEE Transactions on Aerospace and Electronic Systems  (Volume:35 ,  Issue: 4 )