By Topic

Job-length estimation and performance in backfilling schedulers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
D. Zotkin ; Maryland Univ., College Park, MD, USA ; P. J. Keleher

Backfilling is a simple and effective way of improving the utilization of space-sharing schedulers. Simple first-come-first-served approaches are ineffective because large jobs can fragment the available resources. Backfilling schedulers address this problem by allowing jobs to move ahead in the queue, provided that they will not delay subsequent jobs. Previous research has shown that inaccurate estimates of execution times can lead to better backfilling schedules. We characterize this effect on several workloads, and show that average slowdowns can be effectively reduced by systematically lengthening estimated execution times. Further, we show that the average job slowdown metric can be addressed directly by sorting jobs by increasing execution time. Finally, we modify our sorting scheduler to ensure that incoming jobs can be given hard guarantees. The resulting scheduler guarantees to avoid starvation, and performs significantly better than previous backfilling schedulers

Published in:

High Performance Distributed Computing, 1999. Proceedings. The Eighth International Symposium on

Date of Conference: