By Topic

A new feedback neural network with supervised learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
F. M. A. Salam ; Dept. of Electr. Eng., Michigan State Univ., East Lansing, MI, USA ; S. Bai

A model is introduced for continuous-time dynamic feedback neural networks with supervised learning ability. Modifications are introduced to conventional models to guarantee precisely that a given desired vector, and its negative, are indeed stored in the network as asymptotically stable equilibrium points. The modifications entail that the output signal of a neuron is multiplied by the square of its associated weight to supply the signal to an input of another neuron. A simulation of the complete dynamics is then presented for a prototype one neuron with self-feedback and supervised learning; the simulation illustrates the (supervised) learning capability of the network

Published in:

IEEE Transactions on Neural Networks  (Volume:2 ,  Issue: 1 )