By Topic

Macroevolutionary algorithms: a new optimization method on fitness landscapes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
J. Marin ; Dept. de Llenguatges i Sistemes Inf., Univ. Politecnica de Catalunya, Barcelona, Spain ; R. V. Sole

Introduces an approach to optimization problems based on a previous theoretical work on extinction patterns in macroevolution. We name them macroevolutionary algorithms (MA). Unlike population-level evolution, which is employed in standard evolutionary algorithms, evolution at the level of higher taxa is used as the underlying metaphor. The model exploits the presence of links between “species” that represent candidate solutions to the optimization problem. To test its effectiveness, we compare the performance of MAs versus genetic algorithms (GA) with tournament selection. The method is shown to be a good alternative to standard GAs, showing a fast monotonous search over the solution space even for very small population sizes. A mean field theoretical approach is presented showing that the basic dynamics of MAs are close to an ecological model of multispecies competition

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:3 ,  Issue: 4 )