By Topic

Graph cut: application to Bayesian emission tomography reconstruction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bonneville, M. ; DIRO, Montreal, Que., Canada ; Meunier, J. ; Roy, S.

We present an application of graph cuts to Bayesian emission tomography (ET) reconstruction. The method is built on the expectation-maximization (EM) maximum a posteriori (MAP) reconstruction. In general, MAP estimates are hard to assess. For instance, methods such as simulated annealing cannot be employed, because of the computational complexity of Bayesian ET reconstruction. We propose to perform a part of the M-step by a maximum-flow computation in a particular flow graph. Because the possible priors (in a maximum-flow approach) are limited to linear function, we have incorporated the estimation of a line process that will preserve discontinuities in the reconstructions. It is the iterative nature of EM that allows the introduction of the line process. The method is illustrated first over synthetic data and then over the Hoffman brain

Published in:

Image Analysis and Processing, 1999. Proceedings. International Conference on

Date of Conference: