By Topic

A control algorithm for hexapod walking machine over soft ground

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
M. Kaneko ; Mech. Eng. Lab., MITI, Tsukuba Sci. City, Ibaraki, Japan ; K. Tanie ; M. N. Mohamad Tan

A control algorithm is presented for a hexapod walking machine, with alternating tripod-gait, proceeding over soft ground. The control algorithm is based on a foot-force sensing and is composed of two parts. The first part, which is applied to the leg alternating phase, confirms the support of body weight and generates the ground model using internal sensors. The second, which is applied to the body-propelling phase, compensates for the additional ground-sinkage due to the change of supporting force using the generated ground model. The proposed control algorithm is incorporated into the hexapod walking machine (MELWALK-III) and some basic experiments are performed to demonstrate the effectiveness of the algorithm for three types of ground simulations

Published in:

IEEE Journal on Robotics and Automation  (Volume:4 ,  Issue: 3 )