By Topic

Support vector machines for histogram-based image classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
O. Chapelle ; Speech & Image Process. Services Res. Lab., AT&T Labs-Res., Red Bank, NJ, USA ; P. Haffner ; V. N. Vapnik

Traditional classification approaches generalize poorly on image classification tasks, because of the high dimensionality of the feature space. This paper shows that support vector machines (SVM) can generalize well on difficult image classification problems where the only features are high dimensional histograms. Heavy-tailed RBF kernels of the form K(x, y)=eΣi|xia-yia|b with a ⩽1 and b⩽2 are evaluated on the classification of images extracted from the Corel stock photo collection and shown to far outperform traditional polynomial or Gaussian radial basis function (RBF) kernels. Moreover, we observed that a simple remapping of the input xi→xia improves the performance of linear SVM to such an extend that it makes them, for this problem, a valid alternative to RBF kernels

Published in:

IEEE Transactions on Neural Networks  (Volume:10 ,  Issue: 5 )