By Topic

Thermal management for multifunctional structures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rawal, S.P. ; Lockheed Martin Astronaut., Denver, CO, USA ; Barnett, D.M. ; Martin, D.E.

Multifunctional structures (MFS) are an innovative concept that offer a new methodology for spacecraft design, eliminating chassis, cables and connectors, and integrating the electronics into the walls of the spacecraft. The MFS design consists of multilayer flexible circuit patches bonded onto a structural composite panel, and multichip modules (MCMs) performing specific functions are bonded onto the circuit patches which are interconnected via flexible circuit jumpers. Incorporation of the high power density two-dimensional (2-D) and three-dimensional (3-D) MCM's into smaller and more efficient packaging designs still has the fundamental requirement to maintain component temperatures within design limits. Higher component qualification temperatures, such as 393 K, can result in smaller spacecraft radiator areas that are consistent with efficient packaging schemes. During the MFS development effort, a structural radiator panel was fabricated using high thermal conductivity (Hi-K) composite facesheets, and several thermal management designs using combinations of Hi-K doublers (150-1500 W/m-K), Hi-K (150-700 W/m-K) corefill, and deployable radiators to maximize MCM's heat rejection. Results of the thermal vacuum tests and details of the thermal design methodology are presented in this paper

Published in:

Advanced Packaging, IEEE Transactions on  (Volume:22 ,  Issue: 3 )