By Topic

Generalized mel frequency cepstral coefficients for large-vocabulary speaker-independent continuous-speech recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
R. Vergin ; INRS Telecommun., Ile des Soeurs, Que., Canada ; D. O'Shaughnessy ; A. Farhat

The focus of a continuous speech recognition process is to match an input signal with a set of words or sentences according to some optimality criteria. The first step of this process is parameterization, whose major task is data reduction by converting the input signal into parameters while preserving virtually all of the speech signal information dealing with the text message. This contribution presents a detailed analysis of a widely used set of parameters, the mel frequency cepstral coefficients (MFCCs), and suggests a new parameterization approach taking into account the whole energy zone in the spectrum. Results obtained with the proposed new coefficients give a confidence interval about their use in a large-vocabulary speaker-independent continuous-speech recognition system

Published in:

IEEE Transactions on Speech and Audio Processing  (Volume:7 ,  Issue: 5 )