By Topic

Design challenges of technology scaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Borkar, S. ; Intel Corp., USA

Scaling advanced CMOS technology to the next generation improves performance, increases transistor density, and reduces power consumption. Technology scaling typically has three main goals: 1) reduce gate delay by 30%, resulting in an increase in operating frequency of about 43%; 2) double transistor density; and 3) reduce energy per transition by about 65%, saving 50% of power (at a 43% increase in frequency). These are not ad hoc goals; rather, they follow scaling theory. This article looks closely at past trends in technology scaling and how well microprocessor technology and products have met these goals. It also projects the challenges that lie ahead if these trends continue. This analysis uses data from various Intel microprocessors; however, this study is equally applicable to other types of logic designs. Is process technology meeting the goals predicted by scaling theory? An analysis of microprocessor performance, transistor density, and power trends through successive technology generations helps identify potential limiters of scaling, performance, and integration

Published in:

Micro, IEEE  (Volume:19 ,  Issue: 4 )