By Topic

Equivalence between voltage-processing methods and discrete orthogonal Legendre polynomial (DOLP) approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Brookner, E. ; Raytheon Co., Sudbury, MA, USA

There are three methods for solving the least-squares estimation (LSE) problem. (1) the power method; (2) the voltage-processing method (square-root method); and (3) the discrete orthogonal Legendre polynomial (DOLP) method. The first involves a matrix inversion and is sensitive to computer round-off errors. The second and third do not require a matrix inversion and are not as sensitive to computer round-off errors. It is shown that the voltage-processing LSE methods (Givens, Householder, and Gram-Schmidt) become the discrete orthogonal Legendre polynomial (DOLP) LSE method when the data can be modeled by a polynomial function and the times between measurements are equal. Furthermore, when the data can be modeled by a polynomial function and the time between measurements are equal, the DOLP is the preferred method because it does not require an orthonormal transformation and it does not require the back-substitution method

Published in:

Signal Processing, IEEE Transactions on  (Volume:47 ,  Issue: 8 )