By Topic

Radar backscatter from breaking waves in Gulf Stream current convergence fronts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Chubb, S.R. ; Remote Sensing Div., Naval Res. Lab., Washington, DC, USA ; Cooper, A.L. ; Jansen, R.W. ; Fusina, R.A.
more authors

Bright linear features have been observed in radar imagery taken near the Gulf Stream (GS) boundary on two separate occasions. In each case, these have been observed directly over strong current convergences. Progress has been made in understanding the origin of these signatures through simulations that incorporate environmental forcing from the winds and currents. These simulations significantly underestimate the backscatter unless wave-breaking (WB) effects are included at least approximately. Using a new, quasistatistical procedure that generalizes and quantifies earlier procedures for including WB effects, the authors have been able to successfully simulate the magnitude and behavior of these signatures. The approach combines the statistically based, composite model of radar backscatter with a deterministic feature model that relates backscatter from breaking waves to a particular geometrical model of a spilling breaker. This is accomplished using localized criteria, defined by local wave crest acceleration, to determine the probability of breaking, and by extending the feature model so that its unknown parameters may be evaluated directly from wave-current interaction calculations. The new approach provides an estimate of the critical crest acceleration of a potentially breaking wave, as a function of wind speed, that agrees with independent measurements

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:37 ,  Issue: 4 )