Cart (Loading....) | Create Account
Close category search window
 

Enhancement and stabilization of cathodic arc using mesh anode

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Tao Zhang ; Dept. of Phys. & Mater. Sci., City Univ. of Hong Kong, Kowloon, Hong Kong ; Tang, Baoyin ; Zeng, Zhaoming ; Chen, Qingchuan
more authors

The performance and characteristics of a cathodic arc deposition apparatus consisting of a titanium cathode, an anode with and without a tungsten mesh, and a coil producing a focusing magnetic field between the anode and cathode arc investigated. The arc voltage Va is measured with a fixed arc current for an anode diameter of 40 mm. The relationship between Va and the magnetic field B with and without a mesh is obtained. In addition, the relationship between the arc current Ia and Vc, the voltage to which the artificial transmission line was charged, is measured with and without the mesh to determine the minimum ignition voltage for the arc when the anode hole diameter is 40 mm. The arc resistance increases with the focusing magnetic strength B and decreases when using the mesh. Our results indicate that the high transparency and large area of the mesh allows a high plasma flux to penetrate the anode from the cathodic arc. The mesh also stabilizes the cathodic arc and gives better performance when used in concert with a focusing magnetic field

Published in:

Plasma Science, IEEE Transactions on  (Volume:27 ,  Issue: 3 )

Date of Publication:

Jun 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.