By Topic

Synthesizing a predatory search strategy for VLSI layouts

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. Linhares ; Nat. Space Res. Inst., Brazilian Minist. of Sci. & Technol., Brazil

When searching for prey, many predator species exhibit a remarkable behavior: after prey capture, the predators promptly engage in “area-restricted search”, probing for consecutive captures nearby. Biologists have been surprised with the efficiency and adaptability of this search strategy to a great number of habitats and prey distributions. We propose to synthesize a similar search strategy for the massively multimodal problems of combinatorial optimization. The predatory search strategy restricts the search to a small area after each new improving solution is found. Subsequent improvements are often found during area-restricted search. Results of this approach to gate matrix layout, an important problem arising in very large scale integrated (VLSI) architectures, are presented. Compared to established methods over a set of benchmark circuits, predatory search is able to either match or outperform the best-known layouts. Additional remarks address the relation of predatory search to the “big-valley” hypothesis and to the field of artificial life

Published in:

IEEE Transactions on Evolutionary Computation  (Volume:3 ,  Issue: 2 )