By Topic

Unmixing-based multisensor multiresolution image fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. Zhukov ; Space Res. Inst., Acad. of Sci., Moscow, Russia ; D. Oertel ; F. Lanzl ; G. Reinhackel

Constrained and unconstrained algorithms of the multisensor multiresolution technique (MMT) are discussed. They can be applied to unmix low-resolution images using the information about their pixel composition from co-registered high-resolution images. This makes it possible to fuse the low- and high-resolution images for a synergetic interpretation. The constrained unmixing preserves all the available radiometric information of the low-resolution image. On the other hand, the unconstrained unmixing may be preferable in case of noisy data. An analysis of the MMT sensitivity to sensor errors showed that the strongest requirement is the accuracy of geometric co-registration of the data; the co-registration errors should not exceed 0.1-0.2 of the low-resolution pixel size. Applications of the constrained and unconstrained algorithms are illustrated on examples of unmixing and fusion of the multiresolution reflective and thermal bands of a real TM/LANDSAT image as well as of a simulated image of the future ASTER/EOS-AMI sensor

Published in:

IEEE Transactions on Geoscience and Remote Sensing  (Volume:37 ,  Issue: 3 )