By Topic

Theoretical limits on the data dependent performance of asynchronous circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. Kearney ; Sch. of Comput. & Inf. Sci., Univ. of South Australia, Adelaide, SA, Australia

Speculations about the ability of asynchronous systems to take advantage of the data dependent performance of circuit components have been widespread. Simulations and actual designs have not however provided much confirmation that it is possible to transfer the average case data dependent performance of a single stage into average case performance of a system without paying an unacceptable area penalty in the implementation. Here it is shown that if area*time is chosen as the performance metric to be minimized there are in fact absolute theoretical limits to achieving data dependent performance as compared with synchronous circuits. These limits are shown to arise in two completely different theoretical approaches each of which make few assumptions about the distribution of data dependent delays experienced when the circuit operates. The theoretical approach confirms many of the tradeoffs that designers of data dependent circuits have long suspected

Published in:

Advanced Research in Asynchronous Circuits and Systems, 1999. Proceedings., Fifth International Symposium on

Date of Conference: