By Topic

From STG to extended-burst-mode machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Beister, J. ; Dept. of Electr. Eng., Kaiserslautern Univ., Germany ; Eckstein, G. ; Wollowski, R.

A method is presented for deriving a system of parallel extended-burst-mode (XBM) machines from a signal transition graph (STG) specifying required input-output behaviour. First, a primitive finite-state machine is derived as the most general, sequential solution, from which allowable concurrency can still be recognized. Output concurrency is dealt with by decomposition (output partitioning, omission of irrelevant inputs). The component FSMs, with input concurrency only, are tested for XBM feasibility and-if positive-their XBM specifications are constructed. The entire procedure is systematic and is illustrated by deriving two XBM machines from an STG with input and output concurrency. We propose to view the STG as the most general and most precise causal specification of any asynchronous design problem, above and beyond considerations of circuit models and delay assumptions

Published in:

Advanced Research in Asynchronous Circuits and Systems, 1999. Proceedings., Fifth International Symposium on

Date of Conference:

1999