By Topic

Good error-correcting codes based on very sparse matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
D. J. C. MacKay ; Cavendish Lab., Cambridge Univ., UK

We study two families of error-correcting codes defined in terms of very sparse matrices. “MN” (MacKay-Neal (1995)) codes are recently invented, and “Gallager codes” were first investigated in 1962, but appear to have been largely forgotten, in spite of their excellent properties. The decoding of both codes can be tackled with a practical sum-product algorithm. We prove that these codes are “very good”, in that sequences of codes exist which, when optimally decoded, achieve information rates up to the Shannon limit. This result holds not only for the binary-symmetric channel but also for any channel with symmetric stationary ergodic noise. We give experimental results for binary-symmetric channels and Gaussian channels demonstrating that practical performance substantially better than that of standard convolutional and concatenated codes can be achieved; indeed, the performance of Gallager codes is almost as close to the Shannon limit as that of turbo codes

Published in:

IEEE Transactions on Information Theory  (Volume:45 ,  Issue: 2 )