Cart (Loading....) | Create Account
Close category search window

The spring scheduling coprocessor: a scheduling accelerator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Burleson, W. ; Dept. of Electr. & Comput. Eng., Massachusetts Univ., Amherst, MA, USA ; Ko, J. ; Niehaus, D. ; Ramamritham, K.
more authors

The spring scheduling coprocessor is a novel very large scale integration (VLSI) accelerator for multiprocessor real-time systems. The coprocessor can be used for static as well as online scheduling. Many different policies and their combinations can be used (e.g., earliest deadline first, highest value first, or resource-oriented policies such as earliest available time first). In this paper, we describe a coprocessor architecture, a CMOS implementation, an implementation of the host/coprocessor interface and a study of the overall performance improvement. We show that the current VLSI chip speeds up the main portion of the scheduling operation by over three orders of magnitude. We also present an overall system improvement analysis by accounting for the operating system overheads and identify the next set of bottlenecks to improve. The scheduling coprocessor includes several novel VLSI features. It is implemented as a parallel architecture for scheduling that is parameterized for different numbers of tasks, numbers of resources, and internal wordlengths. The architecture was implemented using a single-phase clocking style in several novel ways. The 328 000 transistor custom 2-/spl mu/m VLSI accelerator running with a 100-MHz clock, combined with careful hardware/software co-design results in a considerable performance improvement, thus removing a major bottleneck in real-time systems.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:7 ,  Issue: 1 )

Date of Publication:

March 1999

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.