By Topic

On the capacity of generalized write-once memory with state transitions described by an arbitrary directed acyclic graph

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fang-Wei Fu ; Dept. of Math., Nankai Univ., Tianjin, China ; A. J. Han Vinck

The generalized write-once memory introduced by Fiat and Shamir (1984) is a q-ary information storage medium. Each storage cell is expected to store one of q symbols, and the legal state transitions are described by an arbitrary directed acyclic graph. This memory model can be understood as a generalization of the binary write-once memory which was introduced by Rivest and Shamir (1982). During the process of updating information, the contents of a cell can be changed from a 0-state to a 1-state but not vice versa. We study the problem of reusing a generalized write-once memory for T successive cycles (generations). We determine the zero-error capacity region and the maximum total number of information hits stored in the memory for T consecutive cycles for the situation where the encoder knows and the decoder does not know the previous state of the memory. These results extend the results of Wolf, Wyner, Ziv, and Korner (1984) for the binary write-once memory

Published in:

IEEE Transactions on Information Theory  (Volume:45 ,  Issue: 1 )