Cart (Loading....) | Create Account
Close category search window
 

Automatic insertion of gated clocks at register transfer level

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Raghavan, N. ; Hewlett-Packard Co., Cupertino, CA, USA ; Akella, V. ; Bakshi, S.

In synchronous circuits, the clock signal switches at every clock cycle and drives a large capacitance. As a result, the clock signal is a major source of dynamic power dissipation. Significant power savings can be obtained by identifying periods of inactivity in parts of the circuit, and disabling the clock to those parts of the circuit at the appropriate times. Selectively disabling the clock in this manner is referred to as clock gating. In this paper1, we present a methodology to identify registers and flip flops in a circuit for which the clock input can be gated with a control signal. We also generate the combinational logic to produce this control signal. We present an algorithm to estimate the power saving obtained by gating the clock and the performance penalty (if any) associated with the introduction of gating logic. The algorithm generates the clock gating logic which is inserted appropriately into the original circuit to produce a low power, gated clock version of the circuit

Published in:

VLSI Design, 1999. Proceedings. Twelfth International Conference On

Date of Conference:

7-10 Jan 1999

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.