By Topic

Self-synchronized vector transfer for high speed parallel systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fenghao Mu ; Linkoping Univ., Sweden ; Svensson, C.

Communications between processing elements (PEs) in high speed parallel systems become a bottleneck as the function and speed of the PEs improve continuously. Clocked I/O ports in PEs may malfunction if data read failure occurs due to clock skew. To reduce the clock skew, global clock distribution is utilized, however it seems to be more difficult to use this for high speed parallel systems in the future. This paper addresses a self-tested self-synchronization (STSS) method for vector transfer between PEs. A test signal is added to remove the data read failure. This method has these features: high data throughput; low power consumption; no constraints on clock skew and system scale; flexibility in design; less latency. A failure zone concept is used to characterize the behavior of storage elements. Using a jitter injected test signal, robust vector transfer between PEs with arbitrary clock phases is achieved without global synchronization

Published in:

Parallel and Distributed Systems, 1998. Proceedings. 1998 International Conference on

Date of Conference:

14-16 Dec 1998