By Topic

Extended Hopfield models for combinatorial optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
A. Le Gall ; Univ. de Paris Sud, Orsay, France ; V. Zissimopoulos

The extended Hopfield neural network proposed by Abe et al. (1992) for solving combinatorial optimization problems with equality and/or inequality constraints has the drawback of being frequently stabilized in states with neurons of ambiguous classification as active or inactive. We introduce in the model a competitive activation mechanism and we derive a new expression of the penalty energy allowing us to reduce significantly the number of neurons with intermediate level of activations. The new version of the model is validated experimentally on the set covering problem. Our results confirm the importance of instituting competitive activation mechanisms in Hopfield neural-network models

Published in:

IEEE Transactions on Neural Networks  (Volume:10 ,  Issue: 1 )