By Topic

Time domain solution of fault distance estimation and arcing faults detection on overhead lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Djuric, M.B. ; Fac. of Electr. Eng., Belgrade Univ., Serbia ; Radojevic, Z.M. ; Terzija, V.V.

In this paper a new numerical algorithm for arcing faults detection and fault distance estimation is presented. The solution is given in the time domain. It is based on the line terminal voltages and currents processing. A simple new mathematical model of arc voltage is introduced in the estimation. Thereby, the more accurate approach to fault location is derived, particularly for the close-in faults. The new algorithm can be utilized for blocking the automatic reclosing. The unknown model parameters, including the line resistance and inductance, fault resistance and arc voltage amplitude, are estimated by using the least error squares method. The new algorithm is successfully tested through computer simulation and laboratory tests

Published in:

Power Delivery, IEEE Transactions on  (Volume:14 ,  Issue: 1 )