By Topic

Robust image corner detection through curvature scale space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mokhtarian, F. ; Dept. of Electron. & Electr. Eng., Surrey Univ., Guildford, UK ; Suomela, R.

This paper describes a novel method for image corner detection based on the curvature scale-space (CSS) representation. The first step is to extract edges from the original image using a Canny detector (1986). The corner points of an image are defined as points where image edges have their maxima of absolute curvature. The corner points are detected at a high scale of the CSS and tracked through multiple lower scales to improve localization. This method is very robust to noise, and we believe that it performs better than the existing corner detectors An improvement to Canny edge detector's response to 45° and 135° edges is also proposed. Furthermore, the CSS detector can provide additional point features (curvature zero-crossings of image edge contours) in addition to the traditional corners

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:20 ,  Issue: 12 )