By Topic

Nonorthogonal pulseshapes for multicarrier communications in doubly dispersive channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
W. Kozek ; Dept. of Math., Wien Univ., Austria ; A. F. Molisch

A new approach to multicarrier digital communication over time-varying, frequency selective fading channels is presented. We propose a transmission signal set whose basic structure is similar to standard orthogonal frequency division multiple access (OFDM)-setups, i.e., a system of functions generated by time and frequency-shifted versions of a pulse-like prototype function known as a Weyl-Heisenberg (WH) system. Unlike previous OFDM studies, however, which are restricted to the case of orthonormal pulses, we consider nonorthogonal pulses that are adapted to realistically available a priori knowledge of the channel. Perfect transmultiplexing in the case of an ideal channel is incorporated as a mathematical side-constraint. We derive the expected intersymbol/interchannel interference of such a nonorthogonal FDM (NOFDM) system under the assumption of a wide-sense stationary uncorrelated scattering (WSSUS) channel. Based on this result, we compare OFDM and NOFDM schemes with regard to robustness against delay/Doppler spread

Published in:

IEEE Journal on Selected Areas in Communications  (Volume:16 ,  Issue: 8 )