By Topic

Multilevel integral equation methods for the extraction of substrate coupling parameters in mixed-signal IC's

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
M. Chou ; Dept. of Electr. Eng. & Comput. Sci., MIT, Cambridge, MA, USA ; J. White

The extraction of substrate coupling resistances can be formulated as a first-kind integral equation, which requires only discretization of the two-dimensional contacts. However, the result is a dense matrix problem which is too expensive to store or to factor directly. Instead, we present a novel, multigrid iterative method which converges more rapidly than previously applied Krylov-subspace methods. At each level in the multigrid hierarchy, we avoid dense matrix-vector multiplication by using moment-matching approximations and a sparsification algorithm based on eigendecomposition. Results on realistic examples demonstrate that the combined approach is up to an order of magnitude faster than a Krylov-subspace method with sparsification, and orders of magnitude faster than not using sparsification at all.

Published in:

Design Automation Conference, 1998. Proceedings

Date of Conference:

15-19 June 1998