By Topic

Smooth trajectory tracking of three-link robot: a self-organizing CMAC approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kao-Shing Hwang ; Dept. of Electr. Eng., Nat. Chung Cheng Univ., Chia-Yi, Taiwan ; Ching-Shun Lin

A neuro fuzzy system which is embedded in the conventional control theory is proposed to tackle physical learning control problems. The control scheme is composed of two elements. The first element, the fuzzy sliding mode controller (FSMC), is used to drive the state variables to a specific switching hyperplane or a desired trajectory. The second one is developed based on the concept of the self organizing fuzzy cerebellar model articulation controller (FCMAC) and adaptive heuristic critic (AHC). Both compose a forward compensator to reduce the chattering effect or cancel the influence of system uncertainties. A geometrical explanation on how the FCMAC algorithm works is provided and some refined procedures of the AHC are presented as well. Simulations on smooth motion of a three-link robot is given to illustrate the performance and applicability of the proposed control scheme

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:28 ,  Issue: 5 )