By Topic

Independent component analysis: source assessment and separation, a Bayesian approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
S. J. Roberts ; Neural Res. Group, Imperial Coll. of Sci., Technol. & Med., London, UK

The author presents a method of independent component analysis which assesses the most probable number of source sequences from a larger number of observed sequences and estimates the unknown source sequences and mixing matrix. The estimation of the number of true sources is regarded as a model-order estimation problem and is tackled under a Bayesian paradigm. The method is shown to give good results on both synthetic and real data

Published in:

IEE Proceedings - Vision, Image and Signal Processing  (Volume:145 ,  Issue: 3 )